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Abstract

The pose of a polyhedral object can be determined with range data obtained from a set
of simple light-stripe range sensors. However, localization results are highly dependent on
sensor placement. This paper presents a method for designing an optimal sensor placement
of three light-stripe sensors with which to determine the pose of an arbitrarily positioned
object. We evaluate a sensor placement on the basis of average performance measures over
the whole state space of object pose by a Monte Carlo method. An optimal sensor placement
is then selected by another Monte Carlo method which searches for a maximal score function
of the performance measures over the whole state of sensor placements.
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1 Introduction

Recognizing the pose of a three-dimensional (3-D) object in a workspace is a fundamental
task in many computer vision applications, including automated assembly, inspection, and
bin picking. Many 3-D object recognition systems which use dense range images have been
developed [1]. The recognition processes of these systems are very slow, making such tech-
niques impractical for industrial applications. While a dense range image is appropriate for
describing a complex scene precisely, scenes in industrial applications can usually be simpli-
fied by modifying the environment. This modification enables object recognition using only
simple sensors such as light-stripe range finders. Simple range finders are among the fastest
and least expensive ways to acquire accurate range data. Multiple range finders viewing an
object from different perspectives can usually provide enough constraints to determine the
pose of a polyhedral object [171.

The performance of an object recognition system is evaluated with respect to an error
rate of object recognition, recognition speed and pose determination error caused by sensing
and other errors. One important issue for a system with multiple sensors is that system
performance is sensitive to the location of sensors in a workspace, that is, sensor placement.
There are two sensing strategies: on-line planning and off-line planning. On-line planning
selects the best sensing position sequentially and requires planning and execution time be-
tween measurements. On the other hand, off-line planning is desirable for industrial vision
tasks because sensing positions are determined all at once before performing the tasks.

In this paper, we present an off-line method for selecting an optimal sensor placement
of three simple light-stripe range finders which are used to determine the pose of a polyhe-
dral object. Our method consists of three techniques: object recognition, pose uncertainty
estimation and sensor placement evaluation. A method for recognizing an object and esti-
mating the geometric uncertainty of the object's pose was previously described in [16]. In
brief, the pose of an object was recognized by matching 3-D line segments obtained by the
range finders to model faces based on an interpretation tree search technique with geometric
constraints. Then, the geometric uncertainty of the object's pose was estimated by using a
relationship between sensing error and pose error.

By combining these methods, we evaluate the goodness of a sensor placement. The state
space of the pose of a 3-D object has six degrees of freedom with a uniform probability
distribution. Given an object model and a sensor placement of three range finders, an
average error rate of object recognition, average recognition time and average position error
in pose determination over the state space are estimated by a Monte Carlo method. The
given sensor placement can be evaluated by such expected average performance measures.

It is not feasible to explore the entire configuration space which represents an arbitrary
sensor placement to find an optimal sensor placement. For simplicity, we assume that the
configuration of one range finder in the workspace is defined by three Euler angles which
represent the position and orientation of the light plane of the range finder. However,
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there are still many degrees of freedom to specify the configuration of three range finders
simultaneously. Therefore, another Monte Carlo method is used to select an optimal sensor
placement from a configuration space which consists of a finite set of randomly generated
sensor placements. Note that the expected average performance of our object recognition
and pose determination method under an optimal sensor placement can be characterized
completely via the Monte Carlo simulation.

Related Work

The related work on object recognition and pose determination with sparse range data was
reviewed in [161. In brief, Grimson and Lozano-Pirez (9] demonstrated that local unary
and binary geometric constraints are very effective in reducing the size of an interpretation
tree which represents correspondences between sensed features and model features. A least
squares method is usually used to determine the pose of an object [7], [13]. Uncertainty
bounds on the object position were obtained geometrically [5], and algebraically [10].

Research on automatic placement of a TV camera and a light source for a vision task has
been reported [4],[20],[22],[23]. Assuming that the position of an object is known, acceptable
camera positions which simultaneously satisfy the requirements for resolution, field of view,
focus and visibility were determined by combining the geometric relationships between the
camera positions and those requirements [41, and by using an optimization function [22]. An
approach which finds optimal sensor and light source positions in terms of edge visibility was
discussed in [23]. A system which automatically generates a layout plan of local windows
in the field of view of a camera for visual feedback control tasks by using a singular value
decomposition technique was described in [201. The technique was also used to determine
light source positions for a photometric stereo system. However, all the systems described
here can be applied only for an object whose pose is known approximately.

Work on planning sensing strategies has been reported [6],[10],[14],[18],[19],[21]. Most
of the research, however, has addressed the problem of selecting the next optimal sensing
position for object recognition and localization, that is, on-line sequential planning. During
initialization, some sensory measurements are necessary to reasonably reduce the number
of consistent interpretaeions of object pose. Then, selection of the next optimal sensing
position is achieved by evaluating which sensing position would minimize the ambiguity
of the feasible interpretations. The requirements of the initialization were not considered.
Compared with on-line sequential planning, off-line batch mode planning for sensing positions
is very advantageous. This is because moving a sensor on-line is unacceptable for many
industrial applications which require high speed and low cost system configuration. The
issue of finding a configuration of multiple sensors to minimize the pose uncertainty of a 2-D
object without initial measurements was addressed in [24]. However, a necessary condition
for the obtained optimal sensor placement is that it be independent of the object's shape.
This is because a sensor placement is defined as the orientations of the sensors relative to
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the observed object, and because the sensing error characteristics are sensitive only to the
orientations of the sensors. We focus on designing an optimal sensor placement off-line for
a given polyhedral object by evaluating sensor placements in terms of object recognition
performance and geometric uncertainty in pose determination.

Bayesian decision theory can be used to determine optimal sensing positions for object
localization on the basis of average performance, where the average is based on a probability
distribution over the state space of a 2-D object [2]. Decision-theoretic principles with
geometric models, sensor error models and task models were applied to the problems of
optimal sensing strategies and sensor data fusion in [12]. Those approaches handled only
the pose uncertainty of a 2-D object with known assignments between sensed features and
model features.

Goldberg (81 proposed a stochastic framework for manipulation planning where plans are
ranked on the basis of expected cost and demonstrated a stochastically optimal plan for
orienting planar parts with a programmable part feeder. He suggested that the stochastic
planning can be used to treat the problem of finding an optimal sensor plan for recognizing
an object. Stochastic planning is closely related Bayesian decision theory in that both require
a probabilistic model to evaluate average performance. However, the difficulty is that we
must explicitly describe the effect of a sensing operation with a probability distribution over
the state space of a 3-D object. Alternatively, we search for an optimal sensor placement
based on the expected average performance of object recognition and pose determination
by a Monte Carlo method assuming that the state space of a 3-D object has a uniform
probability distribution.

In this section, we introduced the research objective and reviewed related work. Sec-
tion 2 and 3 summarize our object recognition and pose uncertainty estimation techniques
respectively. In Section 4 we define some measures which reflect the system performance of
object recognition and pose determination under a sensor placement. Section 5 introduces a
method for ranking sensor placements on the basis of expected average performance of object
recognition and pose determination, and also design an optimal sensor placement through
simulation. In Section 6, we briefly show experimental results with three light-stripe range
finders. The complete experiments on pose uncertainty under a designed optimal sensor
placement are presented in [16].

2 Fast Object Recognition with Light-Stripe Range
Finders

We begin with an object recognition example. A simple light-stripe range finder projects
a light plane onto the faces of an object and measures 3-D line segments created by the
light-stripe as shown in Figure 1. Three identical range finders are placed in the world
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Figure 1: A simple light-stripe range finder.

coordinate frame as shown in Figure 2. The range finders obtain 3-D line segments as shown
in Figure 3. Our matching scheme which uses an interpretation tree search assigns the sensed
line segments to the corresponding model faces and uses geometric constraints to eliminate
inconsistent segment-face pairings. The object's pose is successfully determined as shown in
Figure 4. In this section, we briefly describe our object recognition and pose determination
technique. Further details are found in [161.

2.1 Interpretation Tree Search by Geometric Constraints

The interpretation tree search technique with local unary and binary geometric constraints
finds a consistent set of pairings (S1 , Mp,), (S 2, MP), . .. , (Sk, Mp,) where Mp, is a model
face which corresponds to line segment Si. The unary constraints check the consistency of
a pairing between a line segment and a model face and the binary constraints check the
consistency of two pairings.

Our unary and binary constraints for segment-face matching are weaker than those for
face-face and edge-edge matching in Grimson's work [11] since line segments carry less infor-
mation than faces and edges. Therefore, after applying the unary and binary constraints, we
apply triplet constraints which check a triplet of pairings between line segments and model
faces to prune the interpretation tree more efficiently. We choose three line segments and
three model faces under the condition that two of the line segments must intersect each
other. Since the two line segments are therefore coplanar, two of the three model faces must
be the same. The intersecting line segments can be used to calculate the normal of the model
face on which the line segments lie. The normal of the other model face can be obtained by
solving a quadratic equation since the normal must be perpendicular to the direction vector
of the third line segment. Further details of the triplet constraints may be found in [16].
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Figure 2: Sensor placement for object recognition. Sensors 0 and 1 are placed on the z
axis, directed toward the origin. Their light planes, which are displayed as triangles, are
orthogonal. Sensor 2 is placed on the x axis and its light plane lies on the x-y plane.

Figurt 3: Obtained 3-D line segments on object faces.
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Figure 4: An object recognition result. Estimated transformations w(RP), w(R.) and lc(R,)
are given in degrees and t., t. and t, are given in millimeters. R. is the standard deviation
of the distances between the endpoints of the line segments and the corresponding object
faces. Ti shows the elapsed time in seconds (Sun SPARCstation 2).

2.2 Computing Transformations

Next, we solve for the rotation matrix R and the translation vector t of the transformation
which maps points in the model coordinate frame into the world coordinate frame in such a
manner that each line segment lies on the corresponding model face. A point p in the world
coordinate frame is related to a corresponding point P in the model coordinate frame

p= RP+t. (1)

Suppose that a line segment Si, whose endpoints are bi and ei, corresponds to a model face
Mpi. If the point p is on the line segment Si, the squared distance from the point to the
corresponding model face is given by

(Ad1 )2 = (NT (R-'(p - t)) + Dp,) (2)

where Np, and Dp, are the unit normal and offset of the model face Mp, respectively. The
rotation and translation components are therefore obtained by minimizing the sum of the
integral of the squared distance along each line segment over all pairings of an obtained
feasible interpretation (Si, Mp,) for Z = 1,..., k

E - (Adi)2dSi (3)

where dsi is an element of line segment Si. An initial rotation component for minimization is
obtained by using a geometric relationship among three segment-face pairings which include
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intersecting line segments. In the event that the three pairings do not include intersecting
line segments, a numerical polynomial-based technique [31 is used to obtain a rotation com-
ponent. Unfortunately, the polynomial-based method is very sensitive to noise and is also
computationally expensive since an eighth-degree equation must be solved. On the other
hand, the method which uses intersecting line segments is very fast and robust since a rota-
tion component is obtained by solving a quadratic equation in the triplet constraint check.
An initial translation component is computed by a least squares method.

3 Geometric Uncertainty in Pose Determination

Now we can determine the pose of an object. However, due to sensing error inherent in
measuring line segments, the obtained transformation contains some error which causes
uncertainty in the position estimate of the object. This section describes our technique for
estimating the pose uncertainty.

3.1 Estimating Pose Uncertainty

Let z=(t•,t1 ,tzwpc)T be transformation variables, and let s=(xi,y-J,z,.. .,x2k,Y2k,Z2k)T be a
vector of endpoint pairs (x 2 i-1 ,y 2i- 1 ,Z2 i-1) and (x 2i,y2i,z 2 i) of line segments Si for i = 1,... , k.
The pose of an object is determined by minimizing the residual E of equation (3) with respect
to z. The necessary condition for E to reach an extremum is given as

8E OE aE OE M E M (9E 0
at O.a a (4)

Now to examine the transformation error Az caused by the sensing error As, we linearize
these non-linear equations around the approximate solution (zo, so) which corresponds to
the correct transformation and endpoints,

AAx "•= -BAs (5)

where A is the Hessian matrix of E with respect to x and B is the Jacobian matrix of M

with respect to s.
Furthermore, a relationship between the transformation error AX and the position error

Avj of a vertex vi is given by
Av. G- D3LAx (6)

where Dj is the Jacobian matrix of vj with respect to x. By substituting equation (5) into
equation (6), the covariance matrix C,,, of the vertex vi is given by

C' -E(AvjAvT)
- Dj(A-B)C,(A-B)TDT (7)
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Figure 5: An uncertainty estimation result after recognizing the object. Three bars on each
vertex show the uncertainty in pose determination. E,(mm) is the average position error of
all vertices.

where C. is the covariance matrix of the line segments' endpoint positions. The elements
of the covariance matrix C,,, describe the uncertainty in vertex position, and hence the x, y
and z components of the position error of each vertex can be approximated as

(An, 3 ,AV1 "Av = (VX1'V'22'VF 3 (8)

3.2 Example

The following is an example of estimating geometric uncertainty in pose determination.
Given the shape of an object, the object's pose in world coordinates, and a sensor placement
of three light-stripe range finders, a range finder simulator calculates line segments which
would appear on the object. We assume that all endpoints of obtained line segments have the
same error (zero mean Gaussian white noise with standard deviation of 1mm). We further
assume that any two endpoints are' independently measured and that their respective errors
are not related (though the mechanism of the sensing error of a range finder is complex
in practice [15]). Thus, the covariance matrix C, of the line segments' endpoint positions
becomes the identity matrix. We can estimate the uncertainty of each vertex of the object
with equation (7).

Given a model as shown in Figure 1, a sensor placement as in Figure 2, and the sane
transformation as in Figure 4, the estimated uncertainty on each vertex of the object is
shown in Figure 5. In this figure, the lengths of three bars on each vertex along x, y and z
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directions are given by equation (8), and show the uncertainty associated with the position
of each vertex. 1

4 Measures for Evaluating Sensor Placements

Given the shape and pose of an object and a sensor placement of three light-stripe range
finders, we can decide whether or not the object is recognizable and also we can estimate
the uncertainty in the object's pose. In this section, we show that the goodness of a sensor
placement can be evaluated through simulation using measures which reflect the performance
of object recognition and pose determination assuming the given sensor placement.

4.1 Performance Measure in Object Recognition

We test our object recognition method using simulations. Three hypothetical light-stripe
range finders are placed in the world coordinate frame as shown in Figure 2. A polyhedral
object as shown in Figure 1 is then placed in the world coordinate frame with a randomly
generated transformation (A-, ti) for the i th object recognition trial.

As input data for the recognition program, a range finder simulator calculates 3-D line
segments which the three light-stripe range finders would get from viewing the object. We
obtain feasible interpretations by performing the interpretation tree search with the geomet-
ric constraints. If all the estimated vertex positions of each feasible interpretation are near
enough to the corresponding correct positions, the interpretation is regarded as correct. The
simulation reports that 949 of 1000 trials are successful and that the average recognition
time is 0.06 seconds. All failed trials correspond to multiple interpretations which include
some correct and some incorrect interpretations.

This simulation suggests that an arbitrary sensor placement can be evaluated with many
recognition trials using a Monte Carlo method. The percentage of failed recognition trials and
the average computation time per trial indicate how good the sensor placement is for object
recognition. One problem is how many trials should be done to evaluate a sensor placement.
Simulation results of 1000, 5000 and 10000 trials under five different sensor piacements
are shown in Table 1. The percentage of failed recognition trials and the recognition time
are almost the same regardless of the number of trials. Thus, 1000 trials are sufficient for
sensor placement evaluation since the improvements gained by using additional trials are not
considered crucial.

IFor display purpose, those lengths equal 12Avj,, 12Av1 , and 12Avj. respectively.
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Table 1: The percentage of failed trails P1 ,ii (%) and the average computation time T (sec)
for N =1000, 5000 and 10000 under five different sensor placements.

Sensor N = 1000 N = 5000 N = 10000

Placement Pc1 it T Pfilt T Piait T

No. 1 5.1 0.059 4.9 0.062 4.9 0.061

No. 2 31.1 0.067 31.8 0.071 31.7 0.071

No. 3 4.9 0.087 5.1 0.072 4.8 0.070

No. 4 14.5 0.070 15.2 0.071 15.0 0.069

No. 5 11.1 0.254 10.5 0.225 10.4 0.229

4.2 Performance Measure in Pose Determination

Our method can estimate the position error of an object when the object's pose has been
determined. Therefore, a Monte Carlo method is used here again to estimate the average
position error of the vertices of an object under a sensor placement with a set of randomly
generated transformations.

For the i th transformation, a maximal position error ei over all vertices of the object is
defined as

e = max ~ 2' (9)1<_j<_,V"'-l V -12 V*")3

where C' is a diagonalized matrix of the covariance matrix C, given by equation(7) and
n is the number of the vertices. The average position error E for a set of transformations
(Ri,ti) for i = 1,... ,N is obtained as

i IV

E -E ei. (10)

The probable error AE of the position error estimate E is defined as

- (E)2

N (11)

The probable error AE is inversely proportional to the square root of the number of trials
N, which is regarded as a characteristic of a Monte Carlo method.

Given an object as shown in Figure 1, and a set of transformations, an estimated average
position error and its probable error under the five sensor placements from Table 1 are
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Table 2: The average position error E (mm) and its probable error AE (mm) under five
different sensor placements.

Sensor N = 1000 N - 5000 N = 10000

Placement E AE E AE E AE

No. 1 1.61 0.024 1.63 0.009 1.63 0.007

No. 2 3.37 0.067 3.47 0.031 3.49 0.023

No. 3 2.04 0.031 2.07 0.015 2.08 0.011

No. 4 2.46 0.051 2.52 0.026 2.51 0.019

No. 5 2.30 0.036 2.30 0.017 2.30 0.012

reported in Table 2. The results show that the average position e. or varies depending on a
sensor placement, and hence the value can be used as a performance measure for evaluating
a sensor placement. Judging from the ratio AE/E, 1000 trials are sufficient to estimate an
average position error.

In summary, a sensor placement can be evaluated with 1000 randomly generated trans-
formations in terms of the following performance measures:

"* Percentage of failed recognition trials Pipit

"* Average recognition time T

"* Average position error E.

5 Sensor Placement Design for Object Pose
Determination

A sensor placement is assigned a triplet of performance measures (Peail, T, E) using a Monte
Carlo method. Our problem is to find a good sensor placement with which an object in
an arbitrary pose would be always recognizable with minimal computation time and with
minimal pose uncertainty. Therefore, sensor placements must be ranked on the basis of
the performance measures to select an optimal sensor placement. In this section, we define
a configuration space which repr'sents all possible sensor placements, introduce a scalar
function to rank the sensor placements, and then design an optimal sensor placement through
simulation.
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Figure 6: The definition of a light plane. The light plane is defined by three Euler angles
(a, fl, -y) and a radius r (constant).

5.1 Configuration Space of Sensor Placements

Suppose that we place three light-stripe range finders on the surface of a sphere whose center
is located at the origin of the world coordinate frame. The location of each range finder is
specified by a light source position, a light plane and a viewpoint which corresponds to a TV
camera position. Since there are many degrees of freedom to specify a sensor placement, we
assume the following conditions to make computation tractable:

"* The range finders can be placed only on the upper hemisphere in practice.

"* The radius of the sphere is constant according to the size of a workspace.

"* One range finder is placed at the north pole of the sphere, directing to the sphere
center and its light plane is aligned with the z-x plane without loss of generality.

"* The light planes of the other range finders also pass through the sphere center.

"* The light source and viewpoint of each range finder are coincident.2

We use three Euler angles a, /3 and -f to represent a sensor placement 0 as shown in
Figure 6. The light plane ir is given by

Ix + my + nz = 0 (12)

2A non-zero baseline complicates simulation by adding occluded line segments to the data. In simulation,
however, we can avoid this problem by assuming a zero baseline. Range is computed by intersecting the
light plane with the model.
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where

I - -cosacosi3sin-- sin acos7

m = -sinacos /sin-+cosacos7 (13)

n = sin/3 sin 7 .

The light source position L, is (r cos a sin /, r sin a sinf/, r cos #)T, where r is the radius of the
sphere. The ranges of the Euler angles are given by 0 < a < 21r, 0 < # s5 r/2, 0 < f < r.
Accordingly, a sensor placement 0 is described with two sets of Euler angles (a,, h1,, 71) and
(a 2,0/2, 72) corresponding to the two movable sensors. Since a sensor placement is represented
by the continuous spaces of such Euler angles, we must partition these spaces into a finite
set of sensor placements, which is called the configuration space E.

5.2 Ranking Sensor Placements

It is not always possible to find an optimal sensor placement which has the best performance
with respect to all the measures simultaneously. Thus, we introduce a scalar function which
combines the performance measures to give a score to each sensor placement. Let zi (i =
1 - 3) be values of a triplet of a sensor placement 0,,,, and let 9i and oi be the mean and the
standard deviation of xi over the configuration space. We define a score S,m for the sensor
placement 6 . as

3 - - Xi

S = wi ( a')(14)

where w1 is a weight. This equation expresses how far the performance measure Xi of a
sensor placement deviates from the mean 9i. The weight wi decides how each performance
measure contributes to the total score Sm,.

Over all sensor placements, the maximal score is

S" = maxS . (15)
e

Hence an optimal sensor placement is defined as a sensor placement with maximal score
S* among the configuration space. By this definition there may be more than one optimal

sensor placement due to ties. Thus to be precise we should refer to "an" optimal sensor
placement rather than "the" optimal sensor placement according to Goldberg's work [8].

5.3 Sensor Placement Design

We are now ready to design an optimal sensor placement for three light-stripe range finders.
However, exploring the entire configuration space of sensor placements is computationally
too expensive. Therefore, we introduce another Monte Carlo approach as a strategy of
selecting an optimal sensor placement. The procedure is as follows:

13



Figure 7: The sensor placement with the highest score for the model No. 1.

"* Generate a set of M sensor placements at random with two sets of Euler angles
(a,,/ ,1,-yi), and (a2,, A,T2), form = 1,... ,M.

"* Estimate the performance measures of each sensor placement.

"* Combine them to give a score to the sensor placement.

"* Select an optimal sensor placement which has a maximal score among all the sensor
placements.

5.4 Simulation Results

We use the object model as shown in Figure 1, and select an optimal sensor placement from
1000 randomly generated sensor placements. The simulation of the m th sensor placement
takes as input 1000 different poses of the object model with randomly generated trans-
formations, estimates the performance measures, and computes the score Sm,. The sensor
placement which has the highest score S'=13.1 for the object model is shown in Figure 7
(The second highest score is 12.5). The triplet for the sensor placement is (P1 •i,, T, E)=(1.6
%, 0.08 sec, 1.66 mm). Here, the weights wi are set as ( 4, 2, 4 ). The same simulation with
a different object model No. 2 as shown in Figure 8 finds the optimal sensor placement as
shown in Figure 9.

The triplet values for the optimal sensor placement and the statistics of estimated perfor-
mance measures for the two models are shown in Table 3. Object recognition for the model
No. 1 is more difficult since the mean and median of P1 .,l are much larger than those of the
model No. 2. Note that ranking of sensor placements changes according to the weights wi.
The weights twi must be set by requirements of a vision task.
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Figure 8: Another object model No.2. The model consists of 12 faces.

Figure 9: The sensor placement with the highest score for the model No. 2.
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Table 3: The triplet values for the optimal sensor placements and the statistics of the
performance measures for the two models.

Measures P f.P, (%) T (sec) E (mm) Sm.

Optimal 1.6 0.08 1.66 13.1

Mean 10.7 0.19 2.28 0.0

Std 6.0 0.23 0.42 7.9

Median 9.7 0.09 2.22 1.6

Optimal 0.2 0.10 1.67 10.3

Mean 1.9 0.36 2.33 0.0No.2 2
Std 2.7 0.23 0.48 8.3

Median 1.0 0.30 2.23 2.0

The tendency of ranking of the randomly generated sensor placements is similar for the
two models, though the optimal sensor placement is different between them. Relatively good
sensor placements for one model are relatively good for the other model. The characteristics
of such good sensor placemcnts are summarized as follows:

"* Two range finders are closely located, and the associated light planes are almost per-
pendicular.

"* The other range finder is far from the others.

These observations can be supported not only from the point of view of geometric uncertainty
in pose determination, but also from a characteristic of our object recognition technique;
computation time for recognition with intersecting line segments is absolutely shorter than
that without intersecting line segments [17]. Under such a sensor placement, intersecting
line segments would more often appear on an object face.

6 Experimental Results

Two simulation results for selecting an optimal sensor placement of three light-stripe range
finders were shown in the previous section. This section briefly presents experimental results
of recognizing an object and estimating pose uncertainty under the optimal sensor placement.
The complete experiments on pose uncertainty under the designed optimal sensor placement
are presented in [16].
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Figure 10: Experimented 3-D line segments and object recognition and position error esti-
mation results for an arbitrary pose.
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Figure 11: Simulated 3-D line segments and object recognition and position error estimation
results fnr the object's pose shown in Figure 10.
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Each light-stripe range finder is composed of a TV camera with a 16 mm lens and a laser
diode projector whose wavelength is 670 nm. The laser beam is spread by a cylindrical lens
to generate a light plane. The baseline length between the TV camera and the laser projector
is about 100 mm. We place three identical range finders above the workspace according to
the configuration of the designed optimal sensor placement for the model No. 1 as shown
in Figure 7. The distance between each range finder and the workspace center is about 350
mm and each range finder's absolute accuracy for measuring 3-D coordinates is - 0.5 mm
within the workspace.

An object like the one depicted in Figure 1 is placed at an arbitrary pose in the workspace.
Each range finder takes two images (one with the laser diode on, one with the diode off) and
obtains 3-D line segments. Figure 10 shows obtained 3-D line segments and object recognition
and position error estimation results. For comparison, Figure 11 shows a simulation result
with the same object pose under the same sensor placement as the experiment shown in
Figure 10. The recognition time in the experiment is 0.67 sec, while only 0.05 sec in the
simulation. In the experiment, the geometric constraints used in the interpretation tree
search were weakened to allow for error in the measurement, thus, increasing the number
of visited nodes. We tried similar experiments with several different poses. A few 3-D line
segments were occluded in some experimental results, while the line segments appeared on
object faces in corresponding simulation results. This is because the range finder simulator
regards the light source and the viewpoint as the same point. Throughout the trials, the
experimental results are consistent with the simulation results except for recognition time
and occlusion.

7 Conclusion

An object recognition system with simple sensors has two advantages: a simple sensor like
a light-stripe range finder is very fast, cheap, reliable and yet provides very accurate data;
sensory data are sparse but have enough constraints to determine the pose of a polyhedral
object. Finding an appropriate sensor placement is a central problem for such a multi-sensor
system. Off-line batch mode planning is indispensable for many industrial vision tasks which
require quickness and low cost system configuration.

In this paper, we have presented a method for designing an optimal sensor placement
when using three light-stripe range finders to determine the pose of a polyhedral object.
We evaluate the goodness of an arbitrary sensor placement with performance measures: an
error rate of object recognition, recognition time and pose uncertainty. An optimal sensor
placement is selected by ranking randomly generated sensor placements with a Monte Carlo
method. Experimental results are in agreement with simulation results. An emphasized
point is that the expected average performance of object recognition and pose determination
under an optimal sensor placement can be characterized completely via simulation. Our
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method is applicable to object pose determination tasks as a designing tool for a sensor
placement.
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